Compute the universal preidction expected improvement
UPEI(x, model, plugin = NULL, alpha = 0.01, up_method = "Empirical", envir = NULL)
x | points of the design space in which the criterion will be computed |
---|---|
model | the surrogate model |
plugin | the current minimum value |
alpha | a parameter for exploration term |
up_method | type of computation, default "Empirical". Other options: "UP_reg" regularized emprirical or "assume_gauss" regularize UP as Gaussian ditribution. |
envir | envirement variable |
the value of the UP expected improvement
#' library(UP) d <- 2 n <- 16 X <- expand.grid(x1=s <- seq(0,1, length=5), x2=s) Xtest <- expand.grid(x1=seq(0,1,length=6), x2=seq(0,1,length=6)) Y <- apply(X, 1, branin) upsm <- UPSM$new(sm= krigingsm$new(), UP=UPClass$new(X,Y,Scale =TRUE)) crit <- UPEI(x= t(Xtest), model=upsm,plugin=min(Y)) print(max(crit))#> [1] 480.8502