Compute the universal preidction expected improvement

UPEI(x, model, plugin = NULL, alpha = 0.01, up_method = "Empirical",
  envir = NULL)

Arguments

x

points of the design space in which the criterion will be computed

model

the surrogate model

plugin

the current minimum value

alpha

a parameter for exploration term

up_method

type of computation, default "Empirical". Other options: "UP_reg" regularized emprirical or "assume_gauss" regularize UP as Gaussian ditribution.

envir

envirement variable

Value

the value of the UP expected improvement

Examples

#' library(UP) d <- 2 n <- 16 X <- expand.grid(x1=s <- seq(0,1, length=5), x2=s) Xtest <- expand.grid(x1=seq(0,1,length=6), x2=seq(0,1,length=6)) Y <- apply(X, 1, branin) upsm <- UPSM$new(sm= krigingsm$new(), UP=UPClass$new(X,Y,Scale =TRUE)) crit <- UPEI(x= t(Xtest), model=upsm,plugin=min(Y)) print(max(crit))
#> [1] 480.8502