Global optimization using the Universal Prediction distribution
upego(model, fun, nsteps, lower, upper, seed = 1, parinit = NULL, control = NULL, EEIcontrol = NULL)
model | the surrogate model |
---|---|
fun | the real function |
nsteps | the number of points to be generated |
lower | the lower bound of the design space |
upper | the upper bound of the design space |
seed | the random seed (default = 1) |
parinit | inital points to be used in the optimization (default NULL) |
control | the optimization control parameters (default NULL) |
EEIcontrol | the optimization criterion parameters (default NULL) |
list of generated points and their values and the last updated surrogate model
#' library(UP) d <- 2; n <- 16 X <- expand.grid(x1=s <- seq(0,1, length=5), x2=s) Y <- apply(X, 1, branin) upsm <- UPSM$new(sm= krigingsm$new(), UP=UPClass$new(X,Y,Scale =TRUE) ) upego_res <- upego( upsm,fun = branin, nsteps = 1, lower= c(0,0),upper = c(1,1) )#> [1] "OPTIMIZATION step : 1 ..." #> [1] "new point " #> x1 x2 #> [1,] 0.125 0.625 #> [1] "New value 8.43883174131785" #> [1] "current best value : 2.94383349064161 inital : 2.94383349064161"print( min(upego_res$last$get_DOE()$y ) )#> [1] 2.943833