Generate points to determine a line level
upinverse(model, fun, target, nsteps, lower, upper, seed = 1, parinit = NULL, control = NULL, RefControl = NULL)
| model | the surrogate model |
|---|---|
| fun | the real function |
| target | a target value |
| nsteps | the number of points to be generated |
| lower | the lower bound of the design space |
| upper | the upper bound of the design space |
| seed | the random seed (default = 1) |
| parinit | inital points to be used in the optimization (default NULL) |
| control | the optimization control parameters (default NULL) |
| RefControl | the refienement criterion parameters (default NULL) |
list of generated points and their values and the last updated surrogate model
library(lhs) d <- 2 n <- 25 X <- randomLHS(n,d) Y <- apply(X, 1, Tfunc) upsm <- UPSM$new(sm= krigingsm$new(), UP=UPClass$new(X,Y,Scale =TRUE)) upinv_res <- upinverse(upsm, fun = Tfunc, target = 0.8, nsteps = 15, lower= c(0,0),upper = c(1,1))#> [1] "UP-inverse iteration : 1" #> [1] "UP-inverse iteration : 2" #> [1] "UP-inverse iteration : 3" #> [1] "UP-inverse iteration : 4" #> [1] "UP-inverse iteration : 5"#> Warning: Stopped because hard maximum generation limit was hit.#> [1] "UP-inverse iteration : 6" #> [1] "UP-inverse iteration : 7" #> [1] "UP-inverse iteration : 8" #> [1] "UP-inverse iteration : 9" #> [1] "UP-inverse iteration : 10" #> [1] "UP-inverse iteration : 11" #> [1] "UP-inverse iteration : 12" #> [1] "UP-inverse iteration : 13" #> [1] "UP-inverse iteration : 14" #> [1] "UP-inverse iteration : 15"