Enhance the overall prediction capabilities of a surrogate model by the Universal Prediction distribution based Surrogate Modeling Adapative Refinement Strategy UP-SMART

upsmart(model, fun, nsteps, lower, upper, seed = 1, parinit = NULL,
  control = NULL, RefControl = NULL)

Arguments

model

the surrogate model

fun

the real function

nsteps

the number of points to be generated

lower

the lower bound of the design space

upper

the upper bound of the design space

seed

the random seed (default = 1)

parinit

inital points to be used in the optimization (default NULL)

control

the optimization control parameters (default NULL)

RefControl

the refienement criterion parameters (default NULL)

Value

list of generated points and their values and the last updated surrogate model

Examples

#' library(UP) d <- 2; n <- 16 X <- expand.grid(x1=s <- seq(0,1, length=5), x2=s) Xtest <- expand.grid(x1=seq(0,1,length=5), x2=seq(0,1,length=4)) Y <- apply(X, 1, branin) sm <- krigingsm$new() sm$setDOE(X,Y) sm$train() upsmart_res <- upsmart(sm,fun = branin,nsteps = 5, lower= c(0,0),upper = c(1,1))
#> [1] "UP-SMART iteration : 1" #> [1] "UP-SMART iteration : 2" #> [1] "UP-SMART iteration : 3" #> [1] "UP-SMART iteration : 4" #> [1] "UP-SMART iteration : 5"
print(upsmart_res$last$get_DOE())
#> $x #> x1 x2 #> 1 0.0000000 0.0000000 #> 2 0.2500000 0.0000000 #> 3 0.5000000 0.0000000 #> 4 0.7500000 0.0000000 #> 5 1.0000000 0.0000000 #> 6 0.0000000 0.2500000 #> 7 0.2500000 0.2500000 #> 8 0.5000000 0.2500000 #> 9 0.7500000 0.2500000 #> 10 1.0000000 0.2500000 #> 11 0.0000000 0.5000000 #> 12 0.2500000 0.5000000 #> 13 0.5000000 0.5000000 #> 14 0.7500000 0.5000000 #> 15 1.0000000 0.5000000 #> 16 0.0000000 0.7500000 #> 17 0.2500000 0.7500000 #> 18 0.5000000 0.7500000 #> 19 0.7500000 0.7500000 #> 20 1.0000000 0.7500000 #> 21 0.0000000 1.0000000 #> 22 0.2500000 1.0000000 #> 23 0.5000000 1.0000000 #> 24 0.7500000 1.0000000 #> 25 1.0000000 1.0000000 #> 26 0.8818768 0.3738098 #> 27 0.1122530 0.1039815 #> 28 0.3790677 1.0000000 #> 29 0.6236599 0.0000000 #> 30 0.6362611 1.0000000 #> #> $y #> [1] 305.956302 80.060129 10.218600 20.597105 9.503736 191.588546 #> [7] 32.717656 3.185863 27.158559 2.943833 105.345789 13.500183 #> [13] 24.278127 61.845013 24.508931 47.228033 22.407710 73.495391 #> [19] 124.656467 74.199029 17.235277 59.440237 150.837655 215.592921 #> [25] 152.014126 23.531113 123.998113 118.075401 8.803617 193.809155 #>